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We use light-front field theory to study the massive Schwinger
radel. After making a Tamm-Dancoff truncation of Fock space so that
no more than four particles are allowed in any state, the coupled light-
front Tamm-—Dancoff integral equations far charge zero states are
solved by expanding the two-particle and four-particle amplitudes in a
finite basis, thereby converting the original equations into a simple
matrix equation. By retaining the four-particle sector we are able to
study bath the lowest energy boson of the theory and the first excited
state, which for massless fermions is a scattering state of two ground
state bosons. Known results for the massless Schwinger model are
accurately reproduced with reasonably small bases, and existing
numerical results for the massive model are reproduced and improved.
The rich physics of the Schwinger model is used to elucidate several
simple problems in the use of basis functions to solve Hamiltanian field
theoties.  © 1593 Academic Press, Inc,

1. INTRODUCTION

Light-front field theory (LFFT) provides a physically
intuitive method of analyzing relativistic bound states
[1,2]. When one makes a Tamm-Dancoff [3, 4] trunca-
tion of the infinite dimensional Fock space required by local
field theory, limiting the number of constituents [§, 6] any
state can have, the resultant light-front Tamm-Dancofl
(LFTD) approximation [7, 8] may provide a powerful tool
for the analysis of hadrons and nuclei. Of course, such a
truncation is artificial and one must ensure that the limit in
which the entire Fock space is retained can be recovered
from calculations in a truncated space [8 ]. In the case of the
super-renormalizable Schwinger model [9-11] and its
massive fermion extension [12, 137, this limit can be taken
in an extremely naive fashion. One can simply use the
canonical Hamiltonian, without ever needing to study its
renormalization as momentum and particle number cutoffs
change. It has long been appreciated that super-renor-
malizable Hamiltonians change with momentum cutoffs in
a trivial manner [14]. It has simply been observed, first by
Bergknoff {157, that the low energy states of the massive
Schwinger model are approximated well in LFFT {not in
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equal-time field theory (ETFT)) even when the cutoff
on particle number is extremely severe, For e¢xample,
throughout the range of fermion mass, the lowest energy
boson is almost a pure fermion—antifermion bound state.
This makes the Schwinger model unsuitable for the study of
many of the most difficult and interesting renormalization
problems in LFTD; however, it also makes this model an
1deal development ground for numerical techniques that are
required before one can attack these renormalization
probiems.

LFFT has several advantages over conventional ETFT.
First and most importantly, in light-front coordinates
vacuum degrees of freedom are easily isolated and removed,
forcing the vacuum to be trivial. If spontaneous or dynami-
cal symmetry breaking do not occur, the bare vacuum is the
physical vacuum. If they do occur, this is certainly not the
case; however, one can attempt Lo reproduce the effects of
vacuum condensates with effective interactions [16-20].
This effort is tremendously simplified by the fact that
vacuum degrees of freedom are readily separated from the
degrees of freedom that compose physical particles built
on the vacuum. Second, the light-front Lorentz boost
operators do not contain interactions [2], so that the trun-
cation of Fock space according to particle number does not
violate boost invariance. In 1+ 1 dimensions this means
that a Tamm-Dancoff truncation does not violate Lorentz
covariance [87]. In addition, LFFT contains fewer fermionic
degrees of freedom than ETFT, and in a light-cone gauge it
contains only physical gauge degrees of freedom; but the
price is a more complicated Hamiltonian.

In this paper, we apply LFTD to the massive Schwinger
model. The original massless Schwinger model [9-11] and
its massive extension [ 12, 13] have long been considered as
showcases for important aspects of gauge field theory such
as confinement and bosonization. As discussed above, in
some ways the Schwinger model is artificially simple; there-
fore, we only attempt to draw a few simple lessons from our
study and do not advertise it as a significant test of this
appreach for solving gauge theories in 3+ 1 dimensions.
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Nonetheless, our results, added to those from studies [21]
of the Yukawa model in 1 + 1 dimensions, where basis func-
tions and momentum space grids were used to solve LFTD
equations, are encouraging. Our goal is to accurately
reproduce the low-lying states of the Schwinger modei for
all values of the fermion mass, m, (ie, all values of the
coupling, e).

Bergknoff [15] first applied LFFT to the Schwinger
model. He solved the LFFT Hamiltonian equations numeri-
cally in a Fock space truncated to two particles, obtaining
excellent results for the ground state boson throughout the
entire range of fermion mass. He did not discuss the numeri-
cal techniques employed for these calculations. In order to
study the first excited state he discovered that for light
fermions (i.e., strong coupling] it is necessary to include the
four-particle sector of Fock space, and he employed trial
wave functions to find the first excited state. Since the lowest
energy state is odd under charge conjugation, while the
second state is even, one can minimize the energy for states
of each symmetry to obtain the ground state boson and the
first excited state. Our calculations can be viewed as 4 sim-
ple extension of Bergknoff’s calculations to include a larger
space of trial wave functions, and we strongly encourage the
reader to study Bergknoff’s paper before studying our paper
in detail. His work was largely restricted to states in the two-
particle sector, although his variational wave functions were
also adequate for a study of the first excited state very near
the massless limit. For extremely massive quarks (i.e., weak
coupling) it is also fairly easy to construct reasonable trial
wave functions for the first two states, because both are
nonrelativistic and both are almost pure two-particle states.

Discretized light-cone quantization (DLCQ) has also
been used to study the massive Schwinger model [22-24].
DLCQ [25] is quite successful for most couplings;
however, errors grow noticeably as one approaches the
strong-coupling limit. The reasons for this are easily under-
stood, because DLCQ solves the LFFT integral equations
by using equal-spaced grids in momentum space [26, 217.
As we shall discuss, near the massless limit the analytically
determined boundary conditions that wave functions must
satisly near the edges of momentum space [27,15] are
not easily reproduced, and errors near these boundaries
have noticeable effects on eigenvalues. This is a problem
associated with short distance structure in position space.
An equal-time lattice gauge calculation has been completed
by Crewther and Hamer [28]. Their resuits also suffer from
increasing inaccuracy in the strong coupling region because
of problems that are comnplementary to those that occur for
DLCQ. While the ground state boson is tightly bound, the
first excited state consists of two weakly bound bosons
whose wave function has a large spatial extension in the
strong coupling limit. An accurate representation of the first
excited state requires one to resolve structure at both large
and small distance scales, and this is typically difficult for

MO AND PERRY

grids in ecither position or momentum space. Finally we
should mention the numerical studies of Ma and Hiller
[29]. They studied several numerical techniques, but only
considered the theory truncated to one fermion-antifermion
pair. As we discuss below, when the fermion mass
approaches zero the first excited state is almost purely four-
particle and the two-particle approximation is valid only for
the ground state boson. While it is relatively easy to
reproduce the mass and wave function for the ground state
boson, there remains plenty of room to improve the calcula-
tion of the first excited state in the Schwinger model,
especially near the massless limit. This exercise is useful
preparation for the more ambitious challenge of solving
gauge theories in 3 + 1 dimensions, where one must also
worry about the problem of simuitaneousiy reproducing
small and large distance structure in hadronic physics.

It may be useful to briefly consider the significant differen-
ces between the massive Schwinger model and all gauge
theories in 341 dimensions, to emphasize the intrinsic
limitations on the lessons we can learn from this study. In
3 + 1 dimensions ultraviolet (i.e., large transverse momenta)
divergences appear, and the Hamiltonian must be allowed
to “run” with the cutoffs. The gauge fields become dynami-
cal, drastically increasing the size of the Fock space that
must be considered to study even low-{ying states. These
dynamical gauge degrees of freedom have canonical
couplings that lead to new infrared (i.e., small longitudinal
momenta) divergences not seen in 1 + | dimensions. The
Tamm-Dancoff truncation violates rotational invariance.
This immediately impiies that the canonical Hamiltonian,
which is constructed assuming that Lorentz covariance is
maintained, must be supplemented with new “effective”
interactions [30, 20, 31]. There are no calculations that
indicate the Tamm-Dancoff limit, in which the cutoflf on
particle number is removed, can be taken; and only in the
limit of small coupling constants can we support the hope
that this limit will converge using Hamiltonians that closely
resemble the canonical Hamiltonian. Added to these com-
plications, in 341 dimensions basis functions obviously
depend on more variables, and we meed more basis
functions to span a richer space of low-lying states.

In the work presented here, we begin by truncating Fock
space to two-particle (ff) and four-particle (ffff) sectors
and by projecting the Einstein—Schrédinger equation onto
these sectors to arrive at the coupled Tamm-Dancoff
integral equations that govern them. We next choose a trial
basis consisting of a finite number of functions that are not
generally orthonormal. These are used to convert the
integral equations into a simple matrix equation. The com-
puter time required is dominated by the computation of
matrix elements, each of which is a multi-dimensional
integral. Therefore, the choice of an appropriate basis is
driven by the need to reduce the time required to compute
individual matrix elements and to reduce the number of
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basis states {and thereby the number of matrix elements)
required to obtain reasonable approximations. These are
the numerical themes repeatedly emphasized in the text.
Diagoenalization of the resultant Hamiltonian matrix leads
to our approximation for the spectra and wavefunctions of
the low-lying states. The trial basis must be expanded until
the numerical results converge. Richardson extrapolation
[32] can be exploited to determine the rate of convergence
and to improve results.

It is essential that we include the four-particle sector,
because the first excited state of the theory is purely four-
body in the massless limit and makes a smooth transition to
being purely two-body in the limit of infinite mass. When
m; =0, the ground state boson is a pure two-particle state
and the first excited state corresponds to two free bosons
with zero relative momentum. As the mass increases, the
two bosons begin to interact, forming a state that can be
efficiently described as a bound state of two bosons. As the
mass increases further, a transition region occurs in which
the predominantly four-particle state changes smoothly into
a two-particle state that eventually bears no resemblance to
a two-boson bound state. The eigenvalues of both states
change smoothly, and as one expects from simple quantum
mechanical arguments, there are no crossover effects in the
transition region. The transition region is followed by the
large fermion mass timit in which both the ground state and
first excited state become increasingly two-body and
increasingly non-relativistic. In this limit, the ground state
mass approaches 2m,, the nonrelativistic limit. For all
values of the fermion mass we find that the ground state
contains a negligibly small four-particle component
(<04%).

With an appropriate basis, our results accurately
approximate the known exact results when m, = 0Q; ie., the
theory is equivalent to a free theory of bosons with physical
mass M =e/\/5 [10]. The trial wave function methods
leads to the exact resuits in this limit, as Bergknoff showed
[15], because the exact wave functions are extremely simple
in LFFT. Both DLCQ [22, 23] and lattice calculations
[28] confront easily understood problems in this limit. As
the fermion mass grows, the trial wave function chosen by
Bergknoff in some of his calculations must be generalized;
however, all the low-lying states become purely two-particle
in nature and it is possible to use extremely simple trial wave
functions to obtain accurate results for all values of the
fermion mass. When the low-lying states are dominated by
the two-body components, there are many other accurate
numerical techniques one can choose [29]. Both DLCQ
and the fattice become increasingly accurate as m increases.

Using Jacobi polynomials with a weight function chosen
to provide the correct behavior for the amplitudes near the
edges of momentum space or chosen to minimize the mass,
we can readily reproduce, and often improve, all other
numerical results for the low-lying states throughout the
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range of fermion mass. The ground state can be accurately
reproduced using a single polynomial if the weight function
is approximately adjusted, and the first excited state is
accurately reproduced using approximately 20 or fewer
polynomials. This result is encouraging, because the num-
ber of degrees of freedom and variables grows tremendously
when one goes to QCD in 3 + 1 dimensions, and we need to
successfully reproduce hadrons using a small number of
appropriately chosen basis functions.

This paper is organized into three sections. In Section 2
the coupled integral equations for the two- and four-particle
amplitudes are derived from the light-front Finstein—
Schridinger equation. The numerical problem is to
approximate the coupied integral equations (%) and (10) as
matrix equations by finding appropriate basis functions.
The primary constraints on the basis functions are that they
allow fast computation of the multi-dimensional integrals
that lead to matrix elements and that they be “close™ to the
exact eigenstates so that a small number of basis states can
provide an accurate approximation. Most of the discussion
of basis functions, and the presentation of results, is found
in Section 3. We concentrate on the masses and eigenstates
of the first two states for arbitrary fermion mass.

2. THE SCHWINGER MODEL LFTD EQUATIONS

The starting point for our bound state study in light-front
field theory is the quantized version of Einstein’s relation
P?= M7, the Einstein-Schrédinger equation in light-front
coordinates,

M2y =2P"P" ¥ (1)

Here, P* is the light-front momentum operator and P~ is
the light-front Hamiltonian. We adopt the notational con-
ventions of Ref. [8]. Unless otherwise specified, throughout
the rest of this paper we will work with momentum
eigenstates so that P* can be replaced by its eigenvalue, 2.
Equation (1) is not a practical starting point for numerical
calculations, because ¥ » is an infinite dimensional state
vector. We make an approximation that must be justified a
posteriori, letting |y > = |, > + |4 >, so that the wavefunc-
tion is truncated to allow only two- and four-particle com-
ponents. Since the operator P~ has a lower bound for fixed
#, we will at least obtain an upper bound on the energy of
the first two states of the theory using this approximation.
P~ is obtained using canonical quantization at equal
light-front “time,” x* =./1/2 (r +x). We work in light-
cone gauge, so that 4+ =\/1/_2(A°+A‘)=0 and 4~ =
m (A4°— A4') is a constrained variable that is eliminated
using the classical equations of motion. Expanding the
fermion ficld operators in a plane wave basis with ' being
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a fermion creation operator and d' being an antifermion
creation operator, the Hamiltonian is

P‘_Pfrec+P

+ Py +P7, (2}
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e 15 the free part of the Hamiltonian. P, consists of
seif -induced inertias for the fermion and antifermion, which
arise from normal-ordering. P, contains the interactions
that do not change particle number. These include instan-
taneous photon exchange between fermions and/or antifer-
mions, as well as an interaction in which a pair annihilates
into an instantaneous photon at one vertex while another
pair is created at the second vertex. P contains the interac-
tions in which the particle number is changed by two. These
include interactions in which a fermion-antifermion pair

(6}
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annihilates into an instantaneous photon or vice versa at
one vertex, with the instantaneous photon attaching to a
fermion or antifermion at the other vertex. There are
singularities in the Hamiitonian that ultimately cancel
against one another, but some care is required to ensure
that these cancellations are exact. This issue is discussed
below.
The wavefunction 1y > can be expanded,

¢ dk, dk
V=Wt o= P

X 8k, +ky— P) sk, ky) BTk,
P 4
lJ‘ dk, dk, dk dk, 5(2 k_,.—g’)
290 (27)? Jkykoksk, \iT
xYalky, Ky, ki, ky) bT(kl) b?(kz) dT(ks) d¥(ky) |0,
(7)
where ¥, and i, are the two- and four-particle amplitudes,

respectively. Note that we can use Fermi statistics to choose
W, to satisfy

)d'(k2) 105

l[’tl(kls kzs k35 k4)= _¢4(k2’ kh k39 k4)
= _¢4(k1’ k2> k49 k3)

=y4lko, ks kg k3). (8)
Of course, the eigenstates automatically satisfy Fermi
statistics, but the calculation is more efficient if we are able
to choose a basis that manifestly satisfies Eq. (8).

It is convenient to scale the momentum Z out of the
probiem by changing variables to momentum fractions,
x;=k,/#. When we project Eq. (1) onto free two- and
four-particle states, we are led to the coupled equations,
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where 6, ,=d(x— y}and 3!_, x,= 1. Note that this last
restriction implies that the space of free momentum frac-
tions in the four-particle sector is three-dimensional; while
the limitation 0 < x; < 1 for all ¢, implies that the allowed
momentum fractions lie within a tetrahedron in this space.
This constraint presents a severe problem if one tries to find
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a suitable orthonormal basis in the four-body space. We
abandon orthonormality, complicating the ultimate matrix
equation; however, this complication is easily justified
because the solution of the final matrix equation represents
a very small fraction of the total numerical effort.

Equations (9} and (10) have been written so that
cancellations of divergences coming from the long-range
Coulomb interaction in 1 + 1 dimensions are manifest. For
example, in the third term on the right-hand side of Eq. {9)
one can see that two linear divergences coming from PL;
and P, cancel one another, leaving a finite result if one
adopts a Cauchy principal value prescription for the
remaining integral. This is what we do, and the principal
values can be computed analytically in a basis function
calculation.

By inspection, we can see that amplitudes
Wa{xy, x4, X, X5) and —,(1 —x,, x,) satisfy Egs. (9) and
(10), if yra(xq, xq, x5, x4} and y(x,, | —x,) do. k, and &,
are the coordinates of a particle and an antiparticle, respec-
tively, in ¥ ,{k,, k), and k, and &, are particle coordinates,
while k; and k&, are antiparticle coordinates in
walk,, k,, ks, k). Therefore, this observation is a conse-
quence of charge conjugation symmetry, which remains
valid after the Tamm-Dancoff truncation and implies that
the wave functions can be chosen to be either symmetric or
antisymmetric under charge conjugation, Thus, we are able
to choose eigenstates that satisfy

Y3l —xp, )= Fyy®(x,, 1-xy),

11)
wi‘u(xbxdsxl:x‘?): id’:’a(xhxbxli’xtt)s (

where the upper signs correspond to symmetric (s) states
and the lower signs to antisymmetric (g} states. Fermi
statistics aliow us to reduce the size of the Hamiltonian
matrix by a factor of 16 (see Eq. (8)), and charge conjuga-
tion symmetry allows us to reduce its size by an additional
factor of four.

3. SPECTRA AND WAVEFUNCTIONS

The LFTD integral equations, Eqgs. (9) and (10), deter-
mine the spectra and wavefunctions of the truncated theory.
In the massless limit, one can easily check that ¢, =1 and
¥, =0 is an eigenfunction of the coupled equations with
eigenvalue M = e/\/;. This is the ground state of the system
with momentum £, corresponding to a single boson of mass
e/\/; and odd charge conjugation symmetry. With slightly
more difficulty, it can be shown that ,=0 and ,=
\/5(x, —.\cz—)cg,+x4)—\/rft(x1 —X,4+ X3 x4) is also an
eigenstate of the theory with total momentum #, even
charge conjugation symmetry, and eigenvalue M = 2e/\/1;.
Of course, the square root of a delta function must be inter-
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preted using a suitable distribution. This is the first excited
state of the system, corresponding to two free bosons each
with mass e/, /7 and with zero relative momentum. It is also
straightforward to write the eigenstates with nonzerc
relative momentum. It is clear from the wave function that
the bosons are free because there is no scattering term. We
have chosen the norm of the two-boson state to be the same
as the norm of the one-boson state, which is why we
required a square root of a delta function in the four-particle
amplitude. One can avoid such distributions by allowing
states with different numbers of bosons to have different
norms, but in our numerical calculations all states will have
the same norm.

Before discussing the massive case, we should mention a
few potentially confusing results from the massless calcula-
tion. Since we use a finite basis, we can produce only a dis-
crete spectrum even when scattering states exist. Moreover,
when one makes a Tamm-Dancoff truncation there are
always spurious states that correspond to stable excitations
of the fundamental boson and/or scatlering states of such
excitations. Consider what happens if we make the most
severe truncation and allow only two-particle states. In this
case, we exactly reproduce the boson of the theory, but we
also find an infinite tower of excited two-particle states,
which for brevity we will call “excitons.” The first exciton
has a mass approximately 2.43 times that of the ground
state. Since there are no excited states of the fundamental
boson according to the exact solution of the massless
Schwinger model [107], this tower of discrete states is
spurious. Bergknoff speculated [15] that these states
disappear into the continuum when higher sectors of Fock
space are retained, and a careful examination of the exact
operator solution [ [5] reveals that this is indeed what hap-
pens. The excited two-particle states become components of
the exact multi-boson states in the theory. The two-particle
component of every multi-boson state is vanishingly small
when the bosons arc allowed to occupy planc wave states;
however, a two-boson wave packet with unit norm, for
example, typically has a non-vanishing two-particle compo-
nent. Qur basis states are incapable of producing a perfect
plane wave, and the first excited state that we produce is
always a wave packet of unit norm. Therefore, even in the
limit where m, =0, our first excited state has a two-particle
component that noticeably affects both the eigenvalue and
the eigenstate.

When m, #0, we must compute the states numerically

because the LFTD equations have not been solved analyti-
cally. The theory ceases to be equivalent to a theory of free
massive bosons. In the bosonized theory, the bosons begin

to interact [12, 137]. Since the interaction is attractive, one

consequence of the interaction is that a two-boson bound
state forms. Equivalently, the two-fermion and four-fermion
sectors begin to mix and the first excited state of the theory
has a mass that is less than twice the mass of the ground
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state. To see this we must solve Eqgs. (9) and (10)
simultaneously. To do this we choose an “appropriate” set
of basis functions to expand the amplitudes v, and y,. We
take matrix elements of the Hamiltonian between all basis
states, and since we do not assume that the basis states are
orthonormal, we also take matrix elements of the identity.
In this case, Eqs. (9) and (10) are replaced by a single matrix
equation.

This scheme was recently used to find the low-lying two-
fermion bound states in the (1 + 1)-dimensional Yukawa
model, with a Tamm-Dancoff truncation that allows one
virtual boson [21]. In the Yukawa model divergences
occur, and numerical renormalization using sector-
dependent counterterms was one of the primary concerns of
this study. In the Yukawa model in this limited Fock space,
as the fermion mass is reduced (ie., strong coupling limit)
the bound state mass actually becomes negative, so little
effort was made to test the basis function method in the
ultra-relativistic limit of the Yukawa model. In the massive
Schwinger model we need not worry about divergences,
once we have established all requisite cancellations, and
sector-dependent counterterms exist in principle but are very
small and can be ignored. Therefore we can concentrate on
the new problems of including four-particle states efficiently
and, more importantly, on the problem of producing
accurate ultra-relativistic bound states in a theory in which
this limit exists. In addition, there are numerical complica-
tions associated with instantaneous photon exchange that
do not arise in the Yukawa model. These problems,
discussed below, should play a major role in choosing
a suitable basis for gauge theory calculations in 3+1
dimensions also. )

There are several factors that dictate the choice of basis
functions. Physics determines what the exact eigenstates are,
and one obvious criterion is that one wants to use as few
simple basis functions as possible to accurately approximate
the exact eigenstates. As the fermion mass changes, the
cigenstates change drastically, and one must consider the
possibility that different bases should be used for different
masses. Since the number of matrix elements grows like the
square of the number of basis functions, the need to keep
this number small is obvious. However, for most basis func-
tions that we studied the size of the matrix was not a limiting
consideration, Most of the computer time was taken by the
computation of the matrix elements themselves. The reason
is simple. The matrix elements of P~ between two four-
particle basis states involve four-dimensional integrals; e.g.,

1 4 4
]f I1 dxmdyldyzé(z x,,—l)
()

m=1 n=1
XO(Xy+Xa— ¥ — ¥2) Gy, X2, X3, X4)

XGJ'(J’U Y2, X3, x4)_Gj(x1! X3, X3, X4)
(xlfJﬂ)z

(12)
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The basis functions will be discussed later, but it is the
Coulomb interaction, 1/(x, — y,)% that prevents one from
completing such integrals analytically for most basis
functions. For most basis functions (e.g., Gaussians) it is
necessary to perform this integration numerically. Our first
calculations used numerical integration and included only
one four-particle state, yet they required several hours of
CPU time on a VAX 8650. We were forced to study only
basis functions for which all or most integrais can be com-
puted analytically. This is an extremely severe limitation,
Beginning with a Laplace transform, it is possible to reduce
the above integral to a onc-dimensional integral if tri-
gonometric or exponential functions are used. For Jacobi
polynomials with a non-polynomial weight function all
integrals can be computed analytically. In both cases the
analytic expressions for the resultant matrix elements are
tediousty long and are most easily programmed by using
deeply nested loops, which are not suitable if one needs to
vectorize the calculation. Trigonometric and exponential
basis functions suffer from more serious physical problems
that we discuss beiow.

The only suitable basis functions that we discovered for
. and ¢, are products of Jacobi polynomials times a
weight function, x. We use a product of polynomials and
weight functions, one for each momentum fraction in the
amplitude, and we fix § at a single value as discussed below.
These functions were used by Bardeen, Pearson, and
Rabinovici [33] in their transverse lattice studies of
QCD,,,. They are singled out because all integrals
required to set up the matrix problem can be completed
analytically, and we can choose § so that the amplitudes
automatically vanish at the appropriate rate when any
fermion momentum approaches zero. This is accomplished
by letting §= \/3/_1r (mg/e) for small fermion masses. The
exact boundary condition is found by insisting that all
stngularities in Eqgs. (9) and (10) coming from the regions of
momentum space where x, — O cancel [ 27, 15]. This implies

2
:rrmf

?—1+nﬁcot(7rﬁ)=0. (13)

We should mention that the cancellation of these x;, -0
divergences is dynamical. If the fermion is massless, the
light-front kinetic energy is zero and the Coulomb interac-
tion leads to a substantial zero-momentum component in
the wave function. When the fermion is massive, the kinetic
energy goes like 1/x,, and it is the divergence of the kinetic
energy that forces the wave function to vanish as x; —» 0. It
is interesting to note that DLCQ approximates all integrals
using a multi-dimensional trapezoid rule with endpoints
removed. This does not lead to any problems with respect to
cancellations required to obtain the principal value for
integrals like that in Eq. (12); however, it is difficult to
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obtain the correct end-point behavior of the wave-function
when the fermion mass is small without using a large
number of grid points [26, 217,

As the fermion mass becomes large we have found that
the low-lying eigenvalues are much more easily reproduced
if we use Jarger values of § than arise from Eq. (13), such as
\/ﬁ (my/e). The low-lying states strongly peak where the
total momentum can be equally shared between the con-
stituents, and large values of f lead to basis functions that
automatically satisfy this condition. If we choose § to mini-
mize the mass with a single polynomial, we always improve
the convergence of the calculations as the number of basis
functions increases. In fact, as we will see below, it is only
the four-particie sector that requires more than one polyno-
mial if we wish to approximate the masses at the 1% level.
If we do not choose f§ to minimize the energy, using
Eq. (13), for example, increasingly large numbers of polyno-
mials are required to reproduce even the ground state boson
mass.

The main difficultics with using Jacobi polynomials
plague most basis functions. It is possible to choose func-
tions that are orthonormal in the two-particle sector, but
since the three free momenta in the four-particle sector are
constrained to lig inside a tetrahedron, it is quite tedious to
construct an orthonormal basis in the four-particle sector.
Instead we sacrifice orthonormality and solve a generalized
Hamiltonian matrix equation, H [ > = EA |¢ ). Here A is
an overlap matrix containing the matrix elements {¢;|¢,>.
where |@; > is a basis state, and | > is a vector composed of
the coeflicients of the basis states !¢,>. When the determi-
nant of 4 becomes small, roundoff errors can become
significant. This turns out to be a secondary source of
roundoff error and has not yet caused serious problems in
our calculations. As we attempt to increase the number of
Jacobi polynomial basis functions in the four-particle sector
beyond ~ 30, we find that roundoff error becomes signifi-
cant. This error results from the manner in which the
analytic expressions for integrals in the matrix clements of
the Hamiltonian, such as found in Eq. (12), are evaluated.
For both polynomials and trigonometric functions it is most
efficient to express the analytical solution in terms of a sum
of terms, where the number of terms grows as the index on
the basis function grows. In addition, for a polynomial
basis, the magnitude of the individual terms in these sums
grows as the index grows, and large cancellations oceur. It
may be possible to rewrite the analytic results to avoid such
cancellations, but we have found no efficient way to do this.
For the calculations presented here we never required more
than 10 basis functions in the four-particle sector to obtain
reasonable convergence for the first two eigenstates; and
roundofl errors were not a serious problem.

Satisfying the boundary condition as any momentum
vanishes, discussed above, is perhaps the most difficult con-
straint placed on a basis. This can be a serious problem for
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functions. (a) m, = O.Ie,'ﬁ. The solid line is the result using 12 Jacobi polynomials with § = \/3/_:: mele=0.1 ﬁ/n, the dotted using 60 trigonometric
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from using a single polynomial with § =450.0 \/5,’1:. The eigenvalues for both cases are shown in Table I.

light fermions even in the two-particle sector, where it is
only necessary for the wave function to vanish at two points.
Many trigonometric functions are required to produce a
wave function that is nearly constant for all momenta except
those near the edge of momentum space. As one can sce in
Fig. la, even 60 trigonometric basis functions cannot
produce the eigenstate that is accurately reproduced by a
few polynomials with the appropriate weight function. In

Fig. 1a we show the result of using = \/5/-11 (m;/eyand 12
Jacobi polynomials; however, the wave function is
reproduced quite well with a single polynomial [15]. In
Fig. 2a we show how the gigenvalue changes with the num-
ber of basis functions in the two-particle sector for these
same basis functions, and it is clear that the eigenvalue is
reproduced with a single polynomial. Note that the results
with trigonometric functions do not even appear to
approach the correct limit. This is simply a result of the fact
that it is not possible to produce a wave function that
vanishes like x# near x =0 and like (1 — x}® near x = 1 using
any finite number of trigonometric and/or exponential func-
tions. It is also an indication of how strongly these regions
of momentum space are weighted in the exact mass. Using
Richardson extrapolation we have numerically established
that the error in a calculation with N trigonometric func-
tions falls off like the inverse of Log(N). This is what one
expects if the error is dominated by end-point behavior. It is
possible to obtain an accurate extrapolation, but far more
trigonometric functions than polynomials are required to
obtain any specified accuracy.

A related, but different problem occurs for heavy
fermions, as seen in Fig. 1b. Here the wave function
approaches zero well away from the boundaries of momen-
tum space because of the kinetic energy, P, in Eq. (3). For
the calculations with polynomials we encounter large
roundoff errors when we use f§ =\/3_/1: (m,/e) and are
forced to use a smaller value such as =280 \/3/11. This
error arises because of cancellations that occur in the
analytic expressions we use for the Hamiltonian matrix
elements. In this case many trigonometric functions produce
a more accurate result than a few polynomials; however,
when we use a program that can handle [arger values of f,
a single polynomial is capable of producing results
as accurate as those obtained using large numbers of
trigonometric functions, as shown by the single diamond in
the lower left corner of Fig. 2b. This figure also shows that
if # is not chosen appropriately, the polynomial basis
calculations do not converge to the correct result as rapidly
as the trigonometric basis calculations. Consideration of the
wave function in Fig. 1b clarifies the problem. If B is not
chosen sufficiently large, polynomials must be used to
decrease the width of the wave function, and the required
cancellations cannot be maintained by a few polynomials.

Such boundary problems are exacerbated in the four-
particle sector where the wave function must vanish at the
proper rate on ail four faces of a tetrahedron. One cannot
even produce a function that vanishes on these faces with a
finite number of basis functions unless they vanish or
approach a constant on these surfaces; of course, it is far
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more difficult to produce functions that vanish at the
appropriate rate. Trigonometric and exponential functions
can be chosen to vanish on these surfaces; however, as
should be clear from the simple two-particle examples
shown in Figs. 1 and 2, it is not possibie to use a small num-
ber of such functions and accurately approximate the power
law behavior with which the exact eigenstates must vanish
as the momentum of any constituent goes to zero. For small
masses this problem becomes increasingly visible in the
eigenvalues, and as discussed above these functions produce
the correct limit only if the number of basis functions is
allowed to become exponentially large.

To clarify this issue, consider the two-particle sector. A
natural choice for the basis might be sin(k,x,), sin(k,,x,),
where x| and x, are the momentum fractions of the fermion
and antifermion, respectively. These functions automati-
cally vanish when either momentum goes to zero; however,
they vanish far too rapidly when m, is small. When m, =0
the lowest energy eigenstate is a constant, and an infinite
number of sines are required to produce a constant. When
mis small but nonzero, the amplitude must vanish at the
endpoints, but no finite number of sines are able to
accurately approximate the power law falloff implied by
Eg. (13). If we expand our basis to include products of
cosines, it is quite simple to obtain the exact ground state in
the massless case, y,=1; however, when m, #0 it is still
impossible to produce the appropriate power law rise near
x=0 without using an exponentially large number of
trigonometric basis functions.

In Table I we list numerical values for the ground state

mass for five values of #1,, For m, =0 one obtains the exact
result using either polynomials or cosines, but sines cannot
accurately approximate this result. When the fermion mass
is small but nonzero, oniy the polynomial bases produce
acceptabie results. As the fermion mass increases, all basis
functions produce comparable results. Note that for ali
values of the fermion mass the ground state eigenvalue is
given to better than 1% accuracy by a single polynomial
when the weight function is chosen to minimize the mass.
Before discussing the results further, let us provide details
concerning the basis function calculations in general and
the polynomial basis functions in particular. Keeping in

TABLEI

Comparison of the Ground State Eigenvatues for
Four Different Basis Functions

Jacobi Jacobi  Trig. & Exp. Cosine Sine

(1) (12) (60) (60) (60)

my=0.0 1.000 1.000 1253 1.000 1.431
=01 1.182 1.182 1.304 1.322 1.457
=1.0 2.860 2.856 2.857 2863 2.858
=10.0 20.56 20.55 20.55 20.55 20.55
= 100.0 200.29 200.50 200.29 200.29 200.29

Note. In the first column, a single the function x#(1 —x)? is used
with f adjusted to minimize the energy. In the second column, 12 Jacobi
polynomials are used multiplying this weight function, with § adjusted
as discussed in the text. The last three columns show the results of using
various combinations of 60 trigonometric and exponential basis functions.
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mind the symmetry requirements on ,(x, 1 —x) and
Wa(x1, X2, X3, X4), we choose
Yalx, 1 = x) =3 a;- Filx), (14)
k
Yalxy, Xy, X3, x4) = Z Biciaks " lekm(x] ) X3, X3, Xg).
ki ko ks
(15)
For the Jacobi polynomial basis
Fiix)=[x(1—-x)]" P}f(2x—1) (16)
and
Gryteorn(X15 X3, X3, X4)
= (x,x2x3x4)ﬁ Pﬂ',ﬁ(xl + X —X3—x4)
x [Pf'zﬂ()ﬁ —X;— X3+ Xy4) Pﬂ;ﬁ(xl — X+ X3—Xy4)
- Pf;ﬁ(xx —X;— X3+ Xg) Pféﬂ(x[ — X+ X3 —Xg}],
(17)

where P##(x) is a Jacobi polynomial. We need to determine
the coefficient wvectors a and b. We have chosen
f=./3/m(my/e) in most examples, unless it is specified
that f is chosen to minimize the energy. In general the
values of f that minimize the energy are larger than
\/.’a/_rr {(m,/e). The subscript k’s on the Jacobi polynomials
determine their order, and they must be chosen so that the
symmetry relations (8) and (11) for ¥39(x,,1—x,)
and Y59(x,, x5, X3, x,) are also satisfied by F(x),
Grriries(X15 X2, X3, X4)

With the expansions in Eqgs. (14} and (15) for ¥, and ¥,
we now multiply Eq. (9) by

[ & E),

and Eq. (10) by

a

1
jo dx, dx; dx, dx, 5( Y x— 1) GrotorilX1, X2 X3, Xa).

j=1

Using Eqs. (8) and (11} and simplifying, we obtain the
matrix equation

(A 0\

0 B®/\b
2mIAD 4 AD_4®

=( acty

s)

4C®
4m B> 4+ 23‘3’+4B‘4’—4B‘5])

(18)

MO AND PERRY

where M is the mass of state and all masses are expressed in
units of e/\/:;. The matrices A", B'”, and C*” are

Wi

A‘“—j dx F,(x) Fy{x),

(19)
n_(" 1
A =.|‘0 dx;F,-(x)Fj(x),
1
A= dxdy Fi(x) E()
(20)
1 Fiv—F.
A«f*):j dxdyF,.(x)M,
Yool (x—y)

CP =] Gy x5, x0) Fixr) =€, (21)
@ (xXa+x,2 TR ’ ”e
Bf'jl}z @ Gilxy, X3, X3, X4) Go(x1, X2, X3, X4), (22)

1

BP=| — Gl %, x0) Gylxy wa v, xg), (23)

(4) Xy
BL‘B)_J.mGi(xlsxzoxaaxea)

ij(J’u Ya, x3’x4}_Gj(xla X3, X3, Xq) (24)

(xl—yl)z ’
1

@y
By J(ei)(xrl'xz)z

X Gi(x1, Xq, X3, X2} G,(¥1, X4, X3, V2), (25)
B(S]__[ Gilxy, x4, X3, X3)

G (yls Xas X34 Yz) G (xla X4, X3, x2) (26)

(x, Jh)z

()

1 4
'[ Ej dxldX2dX3dX4dy1dy25(Z xk—l)
(6) o k=1

where

1
J‘ EJ. dx, dx, dxydx, 6
(4) 0

XX +x3—p,— ¥3)

We can now calculate these integrals and solve the matrix
equation to obtain the spectrum and wavefunctions. The

singularities in the multi-dimensional integrals found in
Eqgs. (20), (24), and (26) are regularized by imposing a
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* principal value prescription, after re-writing the integrals
using

J’ldyf:'(y)_F}(x)

0 (x—y)?
=_._1_F.(x)_j‘ldy;w ve)
x(1—x) ’ o " (x—y) oy

and

1
L dyidy, 8(x, +x,— vy, — )

Gj(yl! Yo, Xa, x4)_Gj(x1, Xy, X3, X4)

. (x:—Jh)z

1 1
= (_+_) Gi(xy, Xa, X3, X4)
Xy X

O(xy+ X — ¥y — ¥,)
(xi—¥)

X [6GJ(J’h Y2, X3, x4)_5Gj(Y1, V2, X3 X4)j|' (28}
&y, 0y,

- Ll dy, dy,

After some tedious algebra, we obtain analytic solutions for
all integrals in terms of gamma functions [33] and no
singularities remain in the numerical caiculation.

For ,(x) to satisfy Eq.(11), we must choose
k=0,2, 4, .. for the ground state, and k=1, 3, 5, ... for the
first excited state, in the polynomials P##(x) that occur in
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the expansion of .{(x). As shown in Figs. 3a and b, the
eigenvalue M converges very rapidly for both of these states
as the number of basis functions in the two-particle sector
increases for all three typical regions of fermion mass. In the
following, we set N =8 for the number of polynomials in
the two-particle sector, because there is no noticeable
improvement when N > 8.

Turning to the four-particie basis, Egs. (8) and (i1)
require us to choose k,=0,2,4, ...and k,, k,=1,3,5, ., or
ky=1,3,5,.., and k,, k=0, 2,4, .. for the ground state
Griran{ X 1. X3, X3, X4) (see Eq. (11)); and for the first excited
state, we must have k,,k,,%k,=0,2,4, .., or k,, k,, ky=
1,35 ... Since the contribution of the four-particle
amplitudes to the ground state is negligibly small (about
0.4% compared to that of the two-particle state), we will
not discuss its small effect on the ground state. Its contribu-
tion to the first excited state can be seen from Figs. 4a and
b, where the convergence of M as the number of the four-
particle basis functions increases is shown. While it is not
clear that M has converged in Fig. 4a, from Fig. 4b we can
see that M does converge rapidly when we include the two-
particle component of the eigenstate. This convergence is
least rapid for the lightest fermion mass, which is also the
state with the largest four-particle component, Convergence
in the four-particle sector is never as rapid as in the two-
particle sector because of the necessity to reproduce both
the internal wave function of each of two bosons and to
reproduce the wave function for the relative motion of these
bosons. As we discuss in detail below, the latter wave
function is strongly peaked in momentum space while the
former is very broad for light fermions.
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FIG. 3. (a) The ground state mass, M,, as a function of the number of two-particle Jacobi polynomial basis functions, N,, for three typical values
of m,. (b) Same as (a} except for the first excited state mass, M. No four-particle states are included in this calculation.
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Given Fi(x) and G, ge(x1, X2, X5, X4), the relative
contribution of the two- and four-particle states to the first
excited state can be calculated, and the result is shown in
Fig. 5. One clearly sees that as the fermion mass increases,
the weakly bound two-boson state that is dominantly a
four-particle state makes a steady transition to becoming a
two-particle excited state that resembles a new stable boson.
As m, — 0 one sees that in our calculations the first excited
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FIG. 5. The relative contribution of the two- and four-particle
components to the first excited state as a function of my.,

state does not become a pure four-particle excitation,
always including at least a 30% two-particle contribution.
As discussed above, it is not possible to produce a state in
which bosons exactly share momentum (i.z., are at rest with
respect to ong another) in the small bases that we consider,
and in the wave packets that can be formed there is a signifi-
cant two-particle component even though the states are
extremely close in mass to the scattering threshold. If one
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FIG. 6. The two-particle component of the ground state wavefunction
for four typical values of m,, which are given in units of e,f\/;z. The norm
is arbitrary.
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I3=Xy— X3+ X3—

X4. (a) Ten four-particle Jacobi polynomial basis functions are used to construct i, and 8 two-particle polynomials are included in

the full state. The resultant mass is MJ=2.007€,’\/7_L (b) Same as (a) with 66 trigonometric basis functions in the four-particle sector and an additional

20 in the two-particle sector. The resultant mass is M, =2.0005¢/. /=

forms a wave-packet using the exact operator solution
{157, there is a significant two-particle contributicn, so this
“error” is entircly due to the problem of constructing a
scattering state with a small basis.

In Fig. 6, we present the ground state wave function,
W,(x). In these calculations we have dropped
Walxy, X, x5, X4), because its presence produces no
noticeable change in ¥,(x). The figure clearly shows the
well-known behavior of the wave function for various
masses. As m, —» 0 the wave function becomes flat in
momentum space. When the mass is small the wave function
vanishes at the boundaries of momentum space as dictated
by Eq. (13). As the mass increases the ground state wave
function becomes increasingly peaked about x = 3. All of
these results agree with previous work {22, 28, 29].

For the first excited state, in the strong coupling or light
fermion mass domain, the four-particle component of the
wave function dominates and resembles two bound fer-
mion-antifermion pairs. Each pair behaves as a relatively
free massive boson [12, 137, with the boson—boson interac-
tion vanishing as m, — 0. The mass of a two-boson state is
minimized when their relative momentum vanishes, so that
the two-boson wave function becomes a delta-function
peaked around x =1, where x is the momentum fraction of
a boson. While our small basis cannot produce a delta
function, Fig. 7a clearly shows that the four-particle wave
function is strongly peaked about x, —x,+ x5, — x,=0and
X; —X;— X3+ x4 =0. These two variables correspond to the
two ways one can form fermion-antifermion pairs from the

581/108/1-12

four particles, and one clearly sees that yr,(x,, x;, x5, x,) I8
symmetric under charge conjugation, as required by
Eg. (11) since the state is symmetric. Figure 8§ shows the
two-particle component when one retains the four-particle
sector, along with the first excited two-particle state that

1.0I\illllllllTIlIilill!IllJ

m=0.0 e/Vr ]

Y I . | | T | I | I § | I W I i i 1.1

¢ 0.2 0.4 Q0.6 0.8 1
x

-1.0

FIG. 8. The two-particle components for the first excited state in the
my, = 0.0 limit. The solid line results from dropping the four-particle com-
ponent. The dashed line is the result with the four-particle component
shown in Fig.7a, while the dot-dashed line is the result with the four-
particle component shown in Fig. Tb.
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one obtains when the four-particle sector is removed. One
sees that the first excited state of the two-particle system, as
well as higher states, mix with the four-particle state to form
the complete two-boson state. In units of e/\/; the excited
state mass is M =2.007, which should be compared to the
exact result of M = 2. This result is exceilent given the smail
number of basis functions used. The fermion and anti-
fermion in each boson want to remain very close in position
space, while the two bosons want to spread as broadly as
possible in position space. The wave functions must
simultaneously reproduce this disparate behavior.

Figure 7b shows the same projection of ¢ 4(x,, x,, X3, x4)
shown in Fig. 7a but from a calculation using trigonometric
functions. Using 66 cosines one is clearly better able to
approximate the delta function required to minimize the
kinetic energy coming from the relative motion of the two
bosons. It is interesting to note that the norm of the two-
particle component of the wave-function produced with
Jacobi polynomials is 0.30, while this norm in the calcula-
tion using trigonometric functions is much closer (o the
exact value of 0, being 0.05, The mass is also more accurate,
being M = 2.0005. This improvement is primarily due to the
fact that many more basis functions are used, and it is
deceptive because it only occurs when m, = 0. In this single
case the wave function is not required to vanish at the edges
of momentum space and the cosines are not required to
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FIG. 9. The masses of the ground state, M,, and first excited state,
M,, as a function of m; The dot-dashed line shows M, which is not
noticeably affected by the four-particle component. The dotted line shows
M, from a calculation with four-particle and no two-particle components,
while the dashed line shows M, from a calculation with two-particle and no
four-particle components. The selid line indicates the results when both
two-particle and four-particle components are retained in the first excited
state,
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approximate the appropriate power law falloff of the wave
functions. When m,is smail but non-zero, the mass estimate
for the cosine basis is about 20% too large, a significant
error. As mentioned above, there is a discontinuous jump in
the mass estimate for the first excited state using this basis.
It increases by roughly 20% when n,is given any non-zero
value,

When m, =0 the four-particle wave function depends
only on the variables displayed in Figs. 7a and b; however,
when ni, #0, it depends on four variables. In this case we
have chosen not to display the wave function; instead, we
show how the physical masses behave over a large range of
fermion masses. Figure 9 shows the mass of the ground state
boson, M, and the first excited state, M., as a function of
the fermion mass m,. The ground state curve (dash-dot line)
is obtained from the calculation of pure two-particle or
mixed two- and four-particle amplitudes. The difference
would not be noticeable in this figure, illustrating the negli-
gible effect of the four-particle sector for the ground state
over a broad range of fermion masses. The dotted ling shows
the first excited state mass when the state is restricted to the
four-particle sector, while the dashed line shows this mass
when the state is restricted to the two-particle sector. The
solid line shows the mass when both sectors are retained.
For large fermion masses one clearly secs that the mass is
approximated quite well by the two-particle calculation,
because the full excited state is almost purely two-particle.
At m, =0, where the excited state should be purely four-
particle one sees that the four-particle calculation does
produce a lower mass than the two-particle calculation;
however, as discussed above, our basis functions are not
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FIG. 10. The binding energy of the first excited state as a function
of m,.
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able to produce a four-particle state corresponding to two
bosons perfectly at rest with respect to one another, and the
dotted line does not precisely meet the solid line because of
this problem. For all small masses energy minimization
guarantees that the solid line will lie below both the dashed
and dotted line. The mass clearly changes smoothly through
the transition region in which the excited state is changing
from a four-particle to a two-particle state.

With M, and M, available, we can calculate the binding
energy B of the first excited state, defined by B=
I— M, /(2M,). This is shown in Fig. 10. In the m, — 0 limit,
the binding energy goes to zero while in the m, — oo limit,
B approaches L. In the region between, the transition is
smooth, and we can compute it accurately through the
entire range of masses using a single set of basis functions.
The behavior shown in this figure is exactly what one
expects in the bosonized theory, where the two bosons
forming the bound state are attracting one another with an
increasingly strong force, and in the fermion theory, where
the two-particle excited state moves downward in mass
from the continuum as the individual fermion masses
increase. Of course the wave functions provide far more
information, allowing one to compute any observable of
interest, such as charge form factors.

In Table 1T we provide a comparison with previous
numerical results [22, 287]. We show all results in the units
chosen in Ref. [21], i.e, in units of . /m} + e%/n. There is no
variational principle for the lattice calculations, so a com-
parison of these results with ours does not immediately
indicate which is more accurate. There is an approximate
minimization principle for DLCQ, and one sees that our
results agree with the DLCQ results for most values of n1,.
The discrepancy increases at the smallest values of the
fermion mass, and here we believe our results because they
smoothly approach the analytic results at #2, = 0. Note that

TABLE Nl

Comparison of Basis Function Results for the Ground State and
the First Excited State Masses, M, ,, with Equal-Time Lattice
Calculations [28], M, _, and with DLCQ Calculations [22],
M,

mie  M_ M, M, M, M, M,
23 2.006 2.006 2.006 2014 2014 2014
2* 2.014 2013 2014 2.036 2033 2.034
23 2032 2030 2031 2109 2081 2,082
22 2067 2.064 2.064 2.212 2.188 2188
2! 2.122 2.114 2.114 2453 2.399 2401
20 2.143 2129 2.129 27177 2723 2717
2! 1.990 1.975 1974 2852 2956 2920
2-2 1.653 1.675 1.653 2.625 2.936 2.803
23 1.367 1476 1.368 2353 2.868 2.542

Note.  All results are given in units of \/m2 + &’/r.
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for the lightest fermion masses our ground state results
agree quite well with the lattice results, while our results for
the excited state differ noticeably from these. We believe
that errors arise in the lattice calculations because of the
necessity to simultaneously produce small and large dis-
tance behavior in the excited state. This problem does not
arise for the ground state because here the fermion-anti-
fermion pair effectively sit on top of one another in the
massless limit (in light-front coordinates), so that it is only
necessary to accurately reproduce short distance behavior.

In summary, the LFTD equations for the massive
Schwinger model can be readily solved for the low-lying
eigenvalues and eigenstates using polynomial basis func-
tions in the two-particle and four-particle sectors of Fock
space. It 1s possible to produce accurate, convergent eigen-
values and eigenstates for all values of the fermion mass,
from weak through strong coupling, using relatively few
{ ~ 10) basis functions in each sector. In the more interesting
case of QCD in 3+ 1 dimensions, we must deal with a
higher number of dimensions, dynamical gluons, extra
internal variables (e.g., color, flavor, and spin}, and an
entirely new set of renormalization problems. It is essential
that we be able to approximate hadron wave functions
using relatively few basis states for the spatial part of the
wave functions, and our results for the massive Schwinger
model are encouraging.
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